Thin Lens Equation

First surface:
\[\frac{n_m}{s_{o1}} + \frac{n_l}{s_{i1}} = \frac{n_l - n_m}{R_1} \]

Second surface:
\[\frac{n_l}{-s_{i1} + d} + \frac{n_m}{s_{i2}} = \frac{n_m - n_l}{R_2} \]

Add these equations and simplify using \(n_m = 1 \) and \(d \to 0 \):
\[\frac{1}{s_o} + \frac{1}{s_i} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \]
(Thin lens equation)
Thick Lenses

• Eliminate the intermediate image distance, s_{i1}
• Focal points:
 – Rays passing through the focal point are refracted parallel to the optical axis by both surfaces of the lens
 – Rays parallel to the optical axis are refracted through the focal point
 – For a thin lens, we can draw the point where refraction occurs in a common plane
 – For a thick lens, refraction for the two types of rays can occur at different planes
Thick Lens: definitions

First focal point \((f.f.l.)\)

Primary principal plane

First principal point

Second focal point \((b.f.l.)\)

Secondary principal plane

Second principal point

Nodal points

If media on both sides has the same \(n\), then:

\(N_1 = H_1\) and \(N_2 = H_2\)
Thick Lens: Principal Planes

Principal planes can lie outside the lens:
Thick Lens: equations

Note: in air \((n=1)\)

\[
\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}
\]

\(x_o x_i = f^2\)

Effective focal length:

\[
\frac{1}{f} = (n_l - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n_l - 1)d_l}{n_l R_1 R_2} \right]
\]

Principal planes:

\[
h_1 = -\frac{f(n_l - 1)d_l}{n_l R_2}
\]

\[
h_2 = -\frac{f(n_l - 1)d_l}{n_l R_1}
\]

Magnification:

\[
M_T \equiv \frac{y_i}{y_o} = -\frac{s_i}{s_o} = -\frac{x_i}{x_o} = -\frac{f}{x_o}
\]
Thick Lens Calculations

1. Calculate focal length
\[\frac{1}{f} = (n - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n - 1)d}{nR_1R_2} \right] \]

2. Calculate positions of principal planes
\[h_1 = -\frac{f(n - 1)d}{nR_2} \]
\[h_2 = -\frac{f(n - 1)d}{nR_1} \]

3. Calculate object distance, \(s_o \), measured from principal plane

4. Calculate image distance:
\[\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f} \]

5. Calculate magnification, \(m_T = -s_i / s_o \)
Thick Lens: example

Find the image distance for an object positioned 30 cm from the vertex of a double convex lens having radii 20 cm and 40 cm, a thickness of 1 cm and \(n_f=1.5\)

\[
\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}
\]

\[
\frac{1}{f} = (n_f - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n_f - 1)d_l}{n_f R_1 R_2} \right]
\]

\[
f = 26.8\, \text{cm}
\]

\[
h_1 = -\frac{26.8 \cdot 0.5 \cdot 1}{-40 \cdot 1.5}\, \text{cm} = 0.22\, \text{cm}
\]

\[
h_2 = -\frac{26.8 \cdot 0.5 \cdot 1}{20 \cdot 1.5}\, \text{cm} = -0.44\, \text{cm}
\]

\[
s_o = 30\, \text{cm} + 0.22\, \text{cm} = 30.22\, \text{cm}
\]

\[
\frac{1}{30.22\, \text{cm}} + \frac{1}{s_i} = \frac{1}{26.8\, \text{cm}}
\]

\[
s_i = 238\, \text{cm}
\]
Can use two principal points (planes) and effective focal length f to describe propagation of rays through any compound system.

Note: any ray passing through the first principal plane will emerge at the same height at the second principal plane.

For 2 lenses (above):

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

$$\frac{H_{11} H_1}{H_1} = \frac{f d}{f_2}$$

$$\frac{H_{22} H_2}{H_2} = \frac{f d}{f_1}$$

Example: page 246
Ray Tracing

- Even the thick lens equation makes approximations and assumptions
 - Spherical lens surfaces
 - Paraxial approximation
 - Alignment with optical axis

- The only physical concepts we applied were
 - Snell’s law: \(n_i \sin \theta_i = n_t \sin \theta_t \)
 - Law of reflection: \(\theta_t = \theta_i \) (in the case of mirrors)

- Can we do better? Can we solve for the paths of the rays exactly?
 - Sure, no problem! But it is a lot of work.
 - Computers are good at doing lots of work (without complaining)
Ray Tracing

• We will still make the assumptions of
 – Paraxial rays
 – Lenses aligned along optical axis

• We will make no assumptions about the lens thickness or positions.

• Geometry:
Ray Tracing

• At a given point along the optical axis, each ray can be uniquely represented by two numbers:
 – Distance from optical axis, y_i
 – Angle with respect to optical axis, α_i

• If the ray does not encounter an optical element its distance from the optical axis changes according to the transfer equation:

$$y_2 = y_1 + d_1 \alpha_1$$

 – This assumes the paraxial approximation $\sin \alpha_1 \approx \alpha_1$
Ray Tracing

• At a given point along the optical axis, each ray can be uniquely represented by two numbers:
 – Distance from optical axis, \(y_i \)
 – Angle with respect to optical axis, \(\alpha_i \)

• When the ray encounters a surface of a material with a different index of refraction, its angle will change according to the refraction equation:

\[
\begin{align*}
 n_{t1} \alpha_{t1} &= n_{i1} \alpha_{i1} - D_1 y_1 \\
 D_1 &= \frac{n_{t1} - n_{i1}}{R_1}
\end{align*}
\]

 – Also assumes the paraxial approximation
Ray Tracing

- Geometry used for the refraction equation:

\[\sin \theta = \frac{y_i}{R} \approx \theta \]

\[\theta_i = \alpha_i + \theta = \alpha_i + \frac{y_i}{R} \]

\[\theta_t = \alpha_t + \theta = \alpha_t + \frac{y_i}{R} \]

\[n_i \theta_i = n_t \theta_t \]

\[n_i \alpha_i + \frac{n_i y_i}{R} = n_t \alpha_t + \frac{n_t y_i}{R} \]

\[n_t \alpha_t = n_i \alpha_i - \left(\frac{n_t - n_i}{R} \right) y_i \]
Matrix Treatment: Refraction

At any point of space need 2 parameters to fully specify ray: distance from axis \((y)\) and inclination angle \((\alpha)\) with respect to the optical axis. Optical element changes these ray parameters.

Refraction:

\[n_{t1}\alpha_{t1} = n_{i1}\alpha_{i1} - D_1 y_{i1} \]

\[y_{t1} = 0 \cdot n_{i1}\alpha_{i1} + y_{i1} \]

note: paraxial approximation

Equivalent matrix representation:

\[
\begin{pmatrix}
 n_{t1}\alpha_{t1} \\
 y_{t1}
\end{pmatrix} = \begin{pmatrix}
 1 & -D_1 \\
 0 & 1
\end{pmatrix} \begin{pmatrix}
 n_{i1}\alpha_{i1} \\
 y_{i1}
\end{pmatrix}
\]

\[r_{t1} = R_1 r_{i1} \]

\[\equiv r_{t1} - \text{output ray} \]

\[\equiv R_1 - \text{refraction matrix} \]

\[\equiv r_{i1} - \text{input ray} \]

Reminder:

\[
\begin{pmatrix}
 A & B \\
 C & D
\end{pmatrix} \begin{pmatrix}
 \alpha \\
 y
\end{pmatrix} \equiv \begin{pmatrix}
 A\alpha + By \\
 C\alpha + Dy
\end{pmatrix}
\]
Matrix: Transfer Through Space

Transfer:

\[n_{i2} \alpha_{i2} = n_{t1} \alpha_{t1} + 0 \cdot y_{t1} \]
\[y_{i2} = d_{21} \cdot \alpha_{t1} + y_{t1} \]

Equivalent matrix presentation:

\[
\begin{pmatrix}
 n_{i2} \alpha_{i2} \\
 y_{i2}
\end{pmatrix}
= \begin{pmatrix}
 1 & 0 \\
 d_{21}/n_{t1} & 1
\end{pmatrix}
\begin{pmatrix}
 n_{t1} \alpha_{t1} \\
 y_{t1}
\end{pmatrix}
\]

\[r_{i2} = T_{21} r_{t1} \]

\[\equiv r_{i2} - output \text{ ray} \]
\[\equiv r_{t1} - input \text{ ray} \]
\[\equiv T_{21} - transfer \text{ matrix} \]
System Matrix

Thick lens ray transfer:
\[\mathbf{r}_{t1} = \mathbf{R}_1 \mathbf{r}_{i1} \]
\[\mathbf{r}_{i2} = \mathbf{T}_{21} \mathbf{r}_{t1} = \mathbf{T}_{21} \mathbf{R}_1 \mathbf{r}_{i1} \]
\[\mathbf{r}_{t2} = \mathbf{R}_2 \mathbf{T}_{21} \mathbf{R}_1 \mathbf{r}_{i1} \]

System matrix:
\[\mathbf{A} = \mathbf{R}_2 \mathbf{T}_{21} \mathbf{R}_1 \rightarrow \mathbf{r}_{t2} = \mathbf{A} \mathbf{r}_{i1} \]

Can treat any system with single system matrix
Thick Lens Matrix

Reminder:

\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} Aa + Bc & Ab + Bd \\ Ca + Dc & Cb + Dd \end{pmatrix}
\]

\[
A = \begin{pmatrix} 1 - D_2 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d_l/n_l & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 - D_1 \\ 0 \end{pmatrix}
\]

\[
\frac{1}{f} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)
\]

For thin lens \(d_l = 0 \)

\[
A = \begin{pmatrix} 1 - D_2d_l/n_l & -D_1 - D_2 + \frac{D_1D_2d_l}{n_l} \\ \frac{d_l}{n_l} & 1 - \frac{D_1d_l}{n_l} \end{pmatrix}
\]

\[
R = \begin{pmatrix} 1 & -D \\ 0 & 1 \end{pmatrix}
\]

\[
T = \begin{pmatrix} 1 & 0 \\ d/n & 1 \end{pmatrix}
\]

System matrix of thick lens

\[
A = R_2 T_2 R_1
\]
Thick Lens Matrix and Cardinal Points

\[\begin{align*}
V_1 H_1 &= \frac{n_{i1}(1 - a_{11})}{-a_{12}} \\
V_2 H_2 &= \frac{n_{i2}(a_{22} - 1)}{-a_{12}}
\end{align*} \]

\[A = \begin{pmatrix}
1 - \frac{D_2 d_l}{n_l} & -D_1 - D_2 + \frac{D_1 D_2 d_l}{n_l} \\
\frac{d_l}{n_l} & 1 - \frac{D_1 d_l}{n_l}
\end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\
a_{21} & a_{22} \end{pmatrix} \]

\[a_{12} = -\frac{n_{i1}}{f_o} = -\frac{n_{i2}}{f_i} \quad \text{in air} \]

\[a_{12} = -\frac{1}{f} \quad \text{effective focal length} \]
Matrix Treatment: example

\[\mathbf{r}_I = \mathbf{T}_1 \mathbf{A} \mathbf{T}_2 \mathbf{r}_O \]

\[
\begin{pmatrix}
 n_I \alpha_I \\
 y_I
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 \\
 d_{12}/n_I & 1
\end{pmatrix}
\begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
 1 & 0 \\
 d_{10}/n_O & 1
\end{pmatrix}
\begin{pmatrix}
 n_O \alpha_O \\
 y_O
\end{pmatrix}
\]

(Detailed example with thick lenses and numbers: page 250)
Mirror Matrix

\[\mathbf{M} = \begin{pmatrix} -1 & -2n/R \\ 0 & 1 \end{pmatrix} \]

Note: \(R < 0 \)

\[
\begin{pmatrix} n\alpha_r \\ y_r \end{pmatrix} = \mathbf{M} \begin{pmatrix} n\alpha_i \\ y_i \end{pmatrix}
\]
\[y_r = y_i \]
\[n\alpha_r = -n\alpha_i - 2ny_i / R \]
\[\alpha_r = -\alpha_i - 2y_i / R \]