Physics 241
Exam 1 February 19, 2004

One (both sides) $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ crib sheet is allowed. It must be of your own creation.
$k=\frac{1}{4 \square \square_{0}}=9 \square 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}$
$\square_{0}=8.85 \square 10^{\square 12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}$
$e=1.602 \square 10^{\square 19} \mathrm{C}$
$c=2.99792458 \square 10^{8} \mathrm{~m} / \mathrm{s}$ (speed of light) $N_{\text {Avogatro }}=6.022 \square 10^{23}$ (number of atoms in 12 g of ${ }^{12} \mathrm{C}$) $\mathrm{m} \square 10^{\square 3} \quad \square \square 10^{\square 6} \mathrm{n} \square 10^{\square 9} \mathrm{p} \square 10^{\square 12} \mathrm{f} \square 10^{\square 15}$ k $10^{3} \quad \mathrm{M} \square 10^{6} \quad \mathrm{G} \square 10^{9} \quad \mathrm{~T} \square 10^{12} \quad \mathrm{P} \square 10^{15}$
For $a x^{2}+b x+c=0$
$x=\frac{\square b \pm \sqrt{b^{2} \square 4 a c}}{2 a}$

1. Please sign the opscan sheet and print your name on it.

Use a \#2 pencil to fill in your full name, your student identification number (old one), and finally the answers for problems 1-13
3. Please be prepared to show your Purdue ID when you hand in your opscan sheet.
. Consider the three infinite charge sheets shown on edge below

$-2 \square_{0} \quad+\square_{0} \quad+3 \square_{0}$

What is value of the electric field in region III?

magnitude	direction
a) $\frac{D_{0}}{\square 0}$	$\square x$
b) $\frac{3 D_{0}}{2 \square}$	$\square x$
c) $\frac{3 \square_{0}}{2 \square_{0}}$	+ x
d) $\frac{2 \square_{0}}{\square_{0}}$	$\square x$

Consider two concentric conducting spheres as shown below. The outer sphere is hollow and as a total charge of $+5 \square \mathrm{C}$ charge on it; its inner radius is $R_{1}=9 \mathrm{~cm}$ and its outer radius is R_{2} 10 cm . The inner sphere has a radius of 1 cm , is solid, and has a charge $-3 \square \mathrm{C}$ on it. What is the potential of the inner surface of the sphe
that the potental at infinite distance is zero.

(a) 180 kV
(b) 200 kV
(c) 300 kV
(d) 720 kV
(e) none of the above

5. Suppose a potential is described by $V(x, y, z)=\left(5 x^{2} \square 2 y^{4}+z^{3}+x y^{2} \square 2 x z^{2}\right)$ volts where x, y, and z are in meters. What is E_{x}, the x-component of the electric field at $x=1 \mathrm{~m}, y=2 \mathrm{~m}$, and $z=3 \mathrm{~m}$?
(a) $10 \mathrm{~V} / \mathrm{m}$
(b) $4 \mathrm{~V} / \mathrm{m}$
(c) $-1 \mathrm{~V} / \mathrm{m}$
(d) $-4 \mathrm{~V} / \mathrm{m}$
(e) none of the above

6. Two charges of equal magnitude but opposite sign are separated by 0.1 nm , thus forming
an electric dipole. If they are oriented in a uniform electric field of $3000 \mathrm{~V} / \mathrm{m}$ as shown
below, what is the magnitude of the torque on the electric dipole? The magnitude of
each of the charges is $1.60 \times 10^{-19} \mathrm{C}$.
(a) $3.1 \times 10^{-26} \mathrm{~N} \cdot \mathrm{~m}$ (b) $3.7 \times 10^{-26} \mathrm{~N} \cdot \mathrm{~m}$ (c) $6.2 \times 10^{-26} \mathrm{~N} \cdot \mathrm{~m}$ (d) $7.4 \times 10^{-26} \mathrm{~N} \cdot \mathrm{~m}$ (e) none of the above

10. Charges q_{1} and q_{2} in the figure below are separated by 1 m . If q_{1} has a charge of $+1 \square \mathrm{C}$ and q_{2} has a charge of $-1 \square \mathrm{C}$, which of the plots below best describes $E(x)$? The origin is denoted by 0 all figures.

Physics 241
 Answer key for blue Exam 1 2/19/04

1. (d) $\frac{2 \square_{0}}{\square_{0}}, \square x$
2. (c) 134 kV
3. (a) 180 kV
4. (c) 1.3 J
5. (b) $4 \mathrm{~V} / \mathrm{m}$
6. (a) $3.1 \square 10^{[26} \mathrm{N} \cdot \mathrm{m}$
7. (c) $\square 5.6 \square 10^{\square 11} \hat{j} \mathrm{~N} / \mathrm{C}$
8. (d) $\square 13.7 \mathrm{~cm}$
9. (c) $8.23 \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}}$
10. (c)
11. (c) $\frac{2 k \square}{a}$
12. (d) 0 J
13. (d) $13 \mathrm{MV} / \mathrm{m}$
